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GFDL and Princeton University

"Milestones in Scientific Computing", from Nature (23 March 2006)

1946 "ENIAC, ... the first
electronic digital computer"
1969 “results from first coupled
ocean-atmosphere general
circulation model are published
by Syukuro Manabe and Kirk
Bryan, paving the way for later
climate simulations that become
a powerful tool in research on
global warming....”
1972 "... the first hand-held
scientific calculator"
1989 "Tim Berners-Lee ...
develops the World Wide Web"
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Scalars, vectors, parallel, parallel vectors

© NEC Corporation 2014 4 

SIMD = Vector ? 

Vector is more efficient than SIMD 
SX is a SIMD-vector 

SX 

Vector 

SIMD 

Scalar 
Input Pipeline Result 

Courtesy Rudi Fischer, NEC.
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Commodity clusters: Beowulf

http://crest.iu.edu/beowulf14/
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History of GFDL Computing

Courtesy Brian Gross, NOAA/GFDL.
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GFDL Strategic Plan: 2012-2016

Basic climate processes and their representations in models.
Comprehensive modeling of climate system variability and
change.
Understanding, detection and attribution, and prediction of
extreme events.
Understanding, detection and attribution, and predictability of
modes of climate variability.
Cryospheric amplification of climate change and sea-level rise.
Understanding the Earth system including biosphere and human
activities.
Climate science, impacts and services.

Google “GFDL Strategic Science Plan”.
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Current suite of GFDL models

CM3: comprehensive tropospheric and stratospheric chemistry,
aerosol-cloud feedbacks.
ESM2M and ESM2G: free-running carbon cycle.
DECP: decadal prediction models at various resolutions with
advanced initialization (ECDA).
C180, C360: atmospheric models with AM3 physics optimized for
tropical storm “permitting” simulations (HiRAM).
Cloud-resolving models (C2560) with bulk microphysics.
Under development for CM4: unified ocean core MOM6, simplified
aerosol chemistry.
Performance guidelines for CMIP-class models: 4 models running
at 100 years/month using half the available machine.
Spinup and millennial control runs are capability runs. Note ESMs
require very long spinup. . .

All models built on common framework and run within a single
distributed workflow.
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FMS: Summary

Scalable high-performance framework on up to O(105)
processors.
Good, stable, dedicated team in Modeling Services.
Broad acceptance and widespread contributions to a working
system: many useful contributions from external users.
Impressive list of features: mosaics, parallel ensemble capability,
experiment database. Equally impressive list of components and
options.
Component list:

atmosphere dycore: FV-CS, FV-LL, BGRID, SPECTRAL, ZETAC.
atmospheric physics and chemistry: AM2, AM2.1 (HiRAM), AM2.1
(Lin), AM3, simple, dry. Fast-Chem
ocean: MOM6, GOLD, MOM5, MOM4p1, MOM4p0, mixed-layer.
land: LAD/LM2, SHE/LM3v, LAD2/LM3, river.
ocean BGC: TOPAZ, COBALT, BLING.
ice: SIS, SIS2 with elements from LANL-CICE.

V. Balaji (balaji@princeton.edu) Climate Computing 22 February 2016 11 / 77



FMS is in its second decade of active use

Machine layer

Distributed grid layer

Model layer

Coupler layer

FMS Infrastructure

User code

FMS Superstructure

? ?

Flexible Modeling System effort began in 1998, when GFDL first
moved on to distributed memory machines
Provided simplified interface to parallelism and I/O: mpp. Abstract
types for “distributed grid” and “fields”.
Diagnostic output, data override, time manager.
Component-based design, abstract types for component state
vectors, exchange grid.
“Sandwich” model influential in community.
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Earth System Model Architecture

Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Complexity implies many different instruction sequences; no hotspots.
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FRE: the FMS Runtime Environment

Operational since 2003, designed to provide an environment for
integrated testing and production.
Rigorous standardized test procedure for evaluating new code and
new model assemblies and configurations.
Integrated existing post-processing structure.
Captures complete configuration from source assembly to
compilation to running, post-processing and analysis.
Simulation database provides retrieval of model output, model
analysis, and now model state and configuration information.
Again influential in community, with “curators” being prototyped at
various sites.
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The FMS user interface: FRE

Comprehensive website for all information and documentation:
http://www.gfdl.noaa.gov/˜fms

Source code maintenance under cvs transitioning to git

Model configuration, launching and regression testing
encapsulated in XML;
Relational database for archived model results;
Standard and custom diagnostic suites;
Regression Test Suite (RTS): ∼100 model configurations
continually tested for internal correctness, as well as with respect
to reference run.

The FMS Runtime Environment (FRE) describes all the steps for
configuring and running a model jobstream; archiving, postprocessing
and analysis of model results.
fremake, frerun, frepp, frecheck, ...
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Elements of FRE

fremake Checkout an appropriate subset of the FMS source code
for an experiment and create an executable;

frerun run an experiment in multiple segments; resubmit if
necessary;

frestatus check the status of an experiment that is underway;
frelist list available experiments;

frepriority switch a job sequence between queues;
frecheck run RTS checks for bitwise accuracy;

frepp FRE post-processing: create time series, time averages,
and plots;

frescrub remove intermediate and redundant files;
freppcheck RTS checks on history and post-processing files.

fredb enter experiments into Curator DB.

Project Chaco is rewriting the FRE infrastructure using Cylc.
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Gaea

The NOAA Climate Modeling and Research System Gaea. Extended
in 2013 to include GPU capabilities.
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Gaea and GFDL

FRE and other elements in the GFDL modeling environment manage
the complex scheduling of jobs across a distributed computing
resource.
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Aerosol indirect effects weaken South Asian monsoon

Cloud-aerosol feedbacks induce a weakening of the Indian monsoon
(Figure courtesy Bollasina et al., Science 2011).
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ESM2M: free-running carbon cycle

Free-running carbon cycle in ESM2M. Emissions-driven runs
comparable to concentration driven runs (and to observations.) Figure
courtesy Ron Stouffer, NOAA/GFDL.
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Hurricane statistics from global high-resolution
atmosphere models

Observed and modeled hurricane tracks from 1981-2005 in a global
50 km (C180) atmospheric model forced by observed SSTs. (Figure 3
from Zhao and Held 2009).
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Interannual variability of hurricane frequency

Interannual variability of W. Atlantic hurricane number from 1981-2005
in the C180 runs. (Figure 7 from Zhao and Held 2009).
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A simple predictor of hurricane counts?

Difference between Atlantic surface temperature TA and
mid-tropospheric global temperature TG dtermines hurricane
generation rate. Figure 16 from Zhao et al (2009).
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Data assimilation

Data assimilation uses ensembles to find likely model trajectory taking
into account model error and observational error. (Figure courtesy
Zhang et al 2008).
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Ensemble Coupled Data Assimilation (ECDA)

Obs. - ECDA

-

-

Ocean

6 6 6

O1 O2 O3

Atmos

? ? ?

A1 A2 A3

Components (“instances”) execute in parallel.
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ENSO modulation: is it decadally predictable?

Effects of the proverbial “flap of a butterfly’s wing”...
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"TC-permitting" models get better with resolution

Intensity distribution improves with resolution. Figure courtesy Gabe
Vecchi.
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"TC-permitting" model FLOR is now used in the
NMME

RT verification: CONUS 
Year 1 Year 2 

T2m 

Prate 

Seasonal forecasting product used in NMME and SPECS. Figure
courtesy Gabe Vecchi.
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The hardware jungle

Upcoming hardware roadmap looks daunting! GPUs, MICs, DSPs,
and many other TLAs. . .

Intel straight line: IvyBridge/SandyBridge, Haswell/Broadwell:
“traditional” systems with threading and vectors.
Intel knight’s move: Knights Corner, Knights Landing: MICs,
thread/vector again, wider in thread space.
Hosted dual-socket systems with GPUs: SIMD co-processors.
BG/Q: CPU only with hardware threads, thread and vector
instructions. No followon planned.
ARM-based systems coming. (e.g with DSPs).
FPGAs? some inroads in finance.
Specialized processors: Anton for molecular dynamics, GRAPE
for astrophysics.
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The software zoo

Exascale using nanosecond clocks implies billion-way concurrency!
It is unlikely that we will program codes with 106− 109 MPI ranks: it will
be MPI+X. Solve for X . . .

CUDA and CUDA-Fortran: proprietary for NVIDIA GPUs. Invasive
and pervasive.
OpenCL: proposed standard, not much penetration.
ACC from Portland Group, now a new standard OpenACC.
Potential OpenMP/OpenACC merging...?
PGAS languages: Co-Array Fortran, UPC, a host of proprietary
languages.
Code generation:

Domain-specific languages (DSLs): e.g STELLA.
Source-to-source translators.
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GFDL between jungle and zoo

GFDL is taking a conservative approach:

it looks like it will be a mix of MPI, threads, and vectors.
Developing a three-level abstraction for parallelism: components,
domains, blocks. Kernels work on blocks and must have
vectorizing inner loops.
Recommendation: sit tight, make sure MPI+OpenMP works well,
write vector-friendly loops, reduce memory footprint, offload I/O.
Other concerns:

Irreproducible computation
Tools for analyzing performance.
Debugging at scale.

Recent experience on Titan, Stampede and Mira reaffirm this
approach.
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ENSO modulation: is it decadally predictable?

Effects of the proverbial “flap of a butterfly’s wing”...
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Most of FMS is now threaded

CM4 on up to 16 threads on gaea. (Figure courtesy Zhi Liang)
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Analysis of dycore architecture for GPU/MIC

Study of code for MPI, threads, vectors. (Chris Kerr, Zhi, Kareem
Sorathia (NASA), Duane Rosenberg (ORNL), Eric Dolven (Cray)...)
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Blocking the dycore for GPU/MIC

Figure courtesy Kareem Sorathia (NASA). Inner loops on i are
retained for vectorization.
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Performance summary: Xeon-SNB vs Xeon-Phi

Phi “speedup” over SNB:
Overall: 0.73
Communication: 0.34
All Computation: 0.86
Top 4: 0.996

Coding issues:

Vector performance very hard to achieve, even with padding halos
for alignment.
Loop unrolling/stripmining/etc needs to be done by hand.
Better performance analysis tools needed.

Courtesy Kareem Sorathia, NASA.
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Results from NIM icosahedral dycore: SNB vs GPU

Courtesy Mark Govett, NOAA/ESRL.
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OpenACC

!$acc parallel num_gangs(ihe-ips+1) vector_length(64) private(flxhi)
!$acc loop gang

do ipn=ips,ihe
!$acc loop vector

do k=1,nvl
flxhi(k) = vnorm(k,edg,ipn)*dp_edg(k,edg,ipn)

Can merge gang and vector on same axis:

do k = kts,kte
!$acc loop gang vector

do i = its,ite
za(i,k) = 0.5*(zq(i,k)+zq(i,k+1))

Courtesy Mark Govett, NOAA/ESRL.
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ECMWF uses PGAS (Co-Array Fortran)

epcc|cresta
Visual Identity Designs

CREST

Overlap Legendre transforms with associated transpositions 

LTINV TRMTOL (MPI_alltoallv) 

LTINV + coarray puts 

OLD 

NEW 

time 

iCAS2013, Annecy 

Co-array assignments become one-sided puts from within threaded
regions.
Courtesy George Mozdzynski, ECMWF.
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CAF results using Cray compiler CCE

epcc|cresta
Visual Identity Designs

CREST
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Courtesy George Mozdzynski, ECMWF.
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COSMO: NWP production code using GPUs

T. SchulthessENES HPC Workshop, Hamburg,  March 17, 2014

Speedup of the full COSMO-2 production problem 
(apples to apples with 33h forecast of Meteo Swiss)

!5

Cray XE6 
(Nov. 2011)

Cray XK7 
(Nov. 2012)

Cray XC30 
(Nov. 2012)

Cray XC30 hybrid (GPU) 
(Nov. 2013)

1x

2x

3x

4x

Current production code

1x

2x

3x

4x

1.35x

1.77x

1.67x 3.36x

New HP2C funded code

1.4x

1.49x 2.5x
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COSMO: energy to solution

T. SchulthessENES HPC Workshop, Hamburg,  March 17, 2014

Cray XE6 
(Nov. 2011)

Cray XK7 
(Nov. 2012)

Cray XC30 
(Nov. 2012)

Cray XC30 hybrid (GPU) 
(Nov. 2013)

6.0

4.5

3.0

1.5

Current production code

1.75x

New HP2C funded code

1.41x

1.49x

2.51x

2.64x

6.89x

Energy to solution (kWh / ensemble member)

!6

3.93x
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Summary of results in the jungle and zoo

Billion-way concurrency still a daunting challenge for everyone: no
magic bullets anywhere to be found. ECMWF’s PGAS approach is
unique and interesting, at least one production GPU model.
GPU/MIC based systems show nominal ∼10 increase in
flops/socket, but actual performance about 1-2X (thus percent of
peak drops from ∼10% to ∼1%)
Software investment paid back in power savings (Schulthess).
More threading needs to be found: to fit 1018 op/s within a 1 MW
power budget, an operation should be 1 pJ: data movement is
∼10 pJ to main memory; ∼100 pJ on network!
DARPA: commodity improvements will slow to a trickle within 10
years: go back to specialized computing?
DOE: double investment in exascale.
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Cubed-sphere, Gnomonic Projection

True equal distance at the 12
edges of the cube
All coordinate lines are great
circles
Coordinates are continuous at
the edges; but derivatives are
discontinuous

Putman and Lin, J. Comp. Phys. 2007.
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FMS index space representation of the cubed sphere

Orientation
changes (e.g
u → −v , v → u)
This is a C4 grid
(C48 ∼ 200 km
resolution; C2880
∼ 3 km resolution)
Typical pace of a
coupled model: 10
y/d at C48; 3 y/d at
C180.

u

u
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Stretched grids

Opposing face gets very coarse
Discontinuities in slope
Scale-aware parameterizations required
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Nested grids
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C2560: 3.5 km resolution global cloud-resolving model

Figure courtesy S-J Lin and Chris Kerr, NOAA/GFDL.
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Towards global cloud-resolving models

Variable-resolution grid in the FV3 model, courtesy S-J Lin.
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The NGGPS Effort

NGGPS: Next-Generation Global Prediction System
HIWPP: High-Intensity Weather Prediction Program

NGGPS and HIWPP launched a program to select a dynamical core
for the next-generation forecast model (target: 3 km non-hydrostatic in
10 years). Selected dycores will undergo a substantial re-engineering
effort for novel architectures.

Scaling tests
Idealized baroclinic wave test with embedded fronts (DCMIP 4.1)
non-hydrostatic orographic mountain waves on reduced-radius
sphere, no rotation
idealized supercell thunderstorm on reduced-radius sphere, no
rotation

http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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NGGPS Mountain Wave test case

http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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NGGPS Scaling Study

http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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GFDL formed a new MDT for 2013-2016

In the 2013-2016 time frame, design and develop GFDL’s best attempt
at a climate model suitable for

projection of climate change up to several hundred years into the
future,
attribution of climate change over the past century,
prediction on seasonal to decadal time scales

keeping in mind the needs for improved regional climate information
and assessments of diverse climate impacts.
The model will be capable of running from emissions in regard to both
the carbon cycle and aerosols.
Courtesy Isaac Held, MDT Lead.
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Target model configurations for CM4/ESM4

50 km atmosphere (C192) and 0.25◦ ocean (MOM6)

Determined by

Lab experience regarding resources needed to develop and utilize
a model for centennial-scale climate projections: at least 3-5
years/day throughput on no more than 1/8 of computational
resource
the GAEA computational resource

Increases in hardware resources and significant software development
would allow us to redefine this trunk model towards higher resolution
and/or greater comprehensiveness, e.g. full eddy-resolving ocean
resolution; more complete stratosphere/troposphere chemistry module
Courtesy Isaac Held.
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Scientific and software challenges

Oceanic mesoscale eddies Can we make a 0.25◦ degree model
look like an eddy-resolving model?
Aerosol/cloud interactions How do we best combine bottom-up
(process-oriented) perspective and top-down constraints provided
by 20th century observations?
Atmospheric boundary layer/low cloud feedbacks Are we in a
position to incorporate a dramatically new type of boundary
layer/shallow convection module similar to CLUBB?
Software Can we find more concurrency to improve wall clock
performance so that we can increase complexity/resolution
relevant to MDT goals

Courtesy Isaac Held.
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CM4 Timeline

Courtesy Isaac Held.
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Current CM4 Status (June 2015)

About 6 months behind timeline!
Testing C96L48 (full-chem, ∼100 species) and C192L32
(fast-chem, ∼20 species) atmospheric models (also C96L32 for
rapid test cycle
boundary layer and convection schemes, gravity-wave drag, etc
still under testing and tuning
COBALT (∼30 species) adds about 50% to the cost of the ocean
model
COBALT timestep decoupled from main loop (much faster!)
alternate 1◦ version of MOM6 being developed for predictability
research
To run CMIP6 (DECK + endorsed MIPs: ∼7500 years) on Gaea
requires models costing about ∼30,000 core-hours per simulated
year (CHSY).
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New metrics for evaluation of models: MJO
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New metrics for evaluation of models: TC climatology

Figure courtesy John Dunne.
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Model tuning: Process fidelity vs model bias

Tuning reduces model bias without violating process fidelity (but poses
a problem for validation).

From Golaz et al 2012.

V. Balaji (balaji@princeton.edu) Climate Computing 22 February 2016 64 / 77



Outline

1 GFDL Strategic Plan: 2012-2016
2 FMS and FRE
3 Scientific drivers: complexity, resolution, uncertainty

Atmospheric physics and chemistry
Marine and terrestrial biogeochemistry
Decadal predictability and prediction studies

4 Towards exascale
5 The Finite-Volume Cubed-Sphere Dynamical Core

Mosaic representation
Variable-resolution gridding within the cubed-sphere
Global cloud-resolving model

6 CM4 Development
7 Comparing real performance across models and machines
8 Summary

V. Balaji (balaji@princeton.edu) Climate Computing 22 February 2016 65 / 77



Multi-model ensembles for climate projection

Figure SPM.7 from the IPCC AR5 Report. 20th century warming
cannot be explained without greenhouse gas forcings.
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Multi-model ensembles to overcome “structural
uncertainty”

Reichler and Kim (2008), Fig. 1: compare models’ ability to simulate
20th century climate, over 3 generations of models.

Models are getting better over time.
The ensemble average is better than any individual model.
Improvements in understanding percolate quickly across the
community.
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Genealogy of climate models

There is a close link between “genetic distance” and “phenotypic
distance” across climate models (Fig. 1 from Knutti et al, GRL, 2013).
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NRC Report on “Advancing Climate Modeling”

The 2012 NRC Report “A National Strategy for Advancing Climate
Modeling” (Google for URL...) made several recommendations:

Structural uncertainty: key issue to be addressed with common
modeling experiments: maintain model diversity while using
common infrastructure to narrow the points of difference.
Global data infrastructure as critical infrastructure for climate
science: data interoperability, common software requirements.
“Nurture” at least one unified weather-climate effort: NWP
methods to address climate model biases; climate runs to address
drift and conservation in weather models.
Forum to promote shared infrastructure: identify key scientific
challenges, design common experiments, set standards for data
interoperability and shared software.
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Real model performance: some considerations

Productions runs may be configured for capability (minimizing time
to solution or SYPD) or capacity nn (minimizing allocation or
CHSY).
Computing resources can be applied to resolution or complexity:
what is a good measure of model complexity?
ESM architecture governs component concurrency: need to
measure load balance and coupler cost.
Codes are memory-bound: locate bloat (memory copies by user
or compiler).
Models configured for scientific analysis bear a significant I/O load
(can interfere with optimization of computational kernels). Data
intensity (GB/CH) is a useful measure for designing system
architecture.
Actual SYPD tells you if you need to devote resources to system
and workflow issues rather than optimizing code.
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Analysis of several GFDL models

Measure overall computation cost for capability (Speed) or
capacity (Throughput) configurations.
Measure complexity as number of prognostic variables in the
model. (There may be better measures based on cluster
coefficients, etc.)
Measure coupler cost and load imbalance separately.
Measure memory bloat as actual memory (resident set size)
compared to ideal memory (number of variables × data domain
size).
Measure I/O load by rerunning model with diagnostics off. (input
files and restart files are considered an unavoidable cost and
aren’t counted here.)
Measure actual SYPD for a complete run (from when you typed
run to when the last history file was archived).

Land and Ice components are ignored in this analysis.
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Analysis of GFDL models: results

Model Resolution Cmplx. SYPD CHSY Coupler Load Imb. I/O MBloat ASYPD

CM3 T
A2L48
O1L50
4.2E6

124 7.7 2.974 0.5% 41% 14.76% 3% 4.9

CM2.6 S
A0.5L32
O0.1L50
4.9E8

18 2.2 212,465 5.71% 20% 12% 1.6

CM2.6 T
A0.5L32
O0.1L50
4.9E8

18 1.1 177,793 1.29% 60% 24% 12% 0.4

CM2.5 T
A0.5L32
O0.25L50
8.3E7

18 10.9 14,327 17% 0% 6.1

FLOR T
A0.5L32
O1L50
9.8E6

18 17.9 5,844 0% 57% 5.1% 31% 12.8

ESM2G S
A2L24
O1L50
3.9E6

63 36.5 279 8.91% 1% 34% 25.2

ESM2G T
A2L24
O1L50
3.9E6

63 26.4 235 2.63% 22% 34% 11.4

More details in Curator database.
Basis for CPMIP
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Preliminary cross-model comparisons

Figure courtesy Eric Maisonnave, Joachim Biercamp, Giovanni Aloisio
and others on the ISENES2 team.
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Preliminary cross-model comparisons: layout

Figure courtesy Eric Maisonnave, Joachim Biercamp, Giovanni Aloisio
and others on the ISENES2 team.

V. Balaji (balaji@princeton.edu) Climate Computing 22 February 2016 74 / 77



CESM on Mira

Courtesy John Dennis and Rich Loft, NCAR. 0.25◦atmosphere,
1◦ocean on 32k cores of Mira at ∼2 SYPD.
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Summary

GFDL Strategic Plan: process studies; development of
comprehensive models; climate extremes; experimental
prediction; downstream science.
Experimental seasonal to decadal prediction, including
high-resolution fully coupled ensemble Kalman filter for data
assimilation
Continued development of extremely high-resolution atmosphere
models using state of the art dynamical core
Unification of ocean model development through MOM5 and
MOM6 (incorporates capabilities from GOLD model into MOM,
incorporates results of Climate Process Teams)
Development of next generation climate model(s) CM4:
convergence of multiple model branches into a few “trunk” models,
through a Model Development Team led by Isaac Held.
Increased integration of NOAA modeling across climate research
and extended-range forecasting.
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